Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Archive
  • Info for
    • Authors
    • Subscribers
    • Institutions
    • Advertisers
  • About Us
    • About Us
    • Editorial Board
  • Connect
    • Feedback
    • Help
  • Alerts
  • ASLA Research Grant
  • Other Publications
    • UWP
    • Ecological Restoration
    • Land Economics
    • Native Plants Journal

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Landscape Journal
  • Other Publications
    • UWP
    • Ecological Restoration
    • Land Economics
    • Native Plants Journal
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Landscape Journal

Advanced Search

  • Home
  • Content
    • Current
    • Archive
  • Info for
    • Authors
    • Subscribers
    • Institutions
    • Advertisers
  • About Us
    • About Us
    • Editorial Board
  • Connect
    • Feedback
    • Help
  • Alerts
  • ASLA Research Grant
  • Follow uwp on Twitter
  • Visit uwp on Facebook
Research ArticlePeer-Reviewed Articles

Created Ecosystems and the Concept of Succession

Charles Andrew Cole
Landscape Journal, January 2019, 38 (1-2) 75-85; DOI: https://doi.org/10.3368/lj.38.1-2.75
Charles Andrew Cole
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • References
  • PDF
Loading

REFERENCES

    1. Badano E. I.,
    2. Samour-Nieva O. R.,
    3. Flores J.,
    4. Flores-Flores J. L.,
    5. Flores-Cano J. A.,
    6. Rodas-Ortíz J. P.
    (2016). Facilitation by nurse plants contributes to vegetation recovery in human-disturbed desert ecosystems. Journal of Plant Ecology, 9, 485–497.
    OpenUrlCrossRef
    1. Batzli G. O.,
    2. Dejaco C. E.
    (2013). White-tailed deer (Odocoileus virginianus) facilitate the development of nonnative grasslands in central Illinois. American Midland Naturalist, 170, 323–334.
    OpenUrl
    1. Bellingham P. J.,
    2. Kardol P.,
    3. Bonner K. I.,
    4. Buxton R. P.,
    5. Morse C. W.,
    6. Wardle D. A.
    (2016). Browsing by an invasive herbivore promotes development of plant and soil communities during primary succession. Journal of Ecology, 104, 1505–1517.
    OpenUrl
    1. Bertin C.,
    2. Yang X.,
    3. Weston L. A.
    (2003). The role of root exudates and allelochemicals in the rhizosphere. Plant and Soil, 256, 67–83.
    OpenUrlCrossRefWeb of Science
    1. Bruel B. O.,
    2. Marques M. C. M.,
    3. Britez R. M.
    (2010). Survival and growth of tree species under two direct seedling planting systems. Restoration Ecology, 18, 414–417.
    OpenUrl
    1. Campbell D. A.,
    2. Cole C. A.,
    3. Brooks R. P.
    (2002). A comparison of created and natural wetlands in Pennsylvania, USA. Wetlands Ecology and Management, 10, 41–49.
    OpenUrl
    1. Chang C.,
    2. Halpern C. B.,
    3. Antos J. A.,
    4. Avolio M. L.,
    5. Biswas A.,
    6. Cook J. E.,
    7. del Moral R.,
    8. Fischer D. G.,
    9. Holz A.,
    10. Pabst R. J.,
    11. Swanson M. E.,
    12. Zobel D. B.
    (2019). Testing conceptual models of early plant succession across a disturbance gradient. Journal of Ecology, 107, 517–530.
    OpenUrl
    1. Chapin F. S.,
    2. Starfield A. M.
    (1997). Time lags and novel ecosystems in response to transient climatic change in Alaska. Climate Change, 35, 449–461.
    OpenUrl
    1. Charbonneau B. R.,
    2. Wootton L. S.,
    3. Wnek J. P.,
    4. Langley J. A.,
    5. Posner M. A.
    (2017). A species effect on storm erosion: Invasive sedge stabilized dunes more than native grass during Hurricane Sandy. Journal of Applied Ecology, 54, 1385–1394.
    OpenUrl
    1. Clements F. E.
    (1916). Plant succession an analysis of the development of vegetation. Carnegie Institution.
    1. Clements F. E.
    (1936). Nature and structure of the climax. Journal of Ecology, 24, 252–284.
    OpenUrlCrossRefWeb of Science
    1. Cole C. A.
    (1991). The seed bank of a young surface mine wetland. Wetlands Ecology and Management, 1, 173–184.
    OpenUrl
    1. Cole C. A.
    (1992). Wetland vegetation ecology on a reclaimed coal surface mine in southern Illinois, USA. Wetlands Ecology and Management, 2, 135–142.
    OpenUrl
    1. Cole C. A.,
    2. Shafer D.
    (2002). Section 404 wetland mitigation and permit success criteria in Pennsylvania, USA, 1986–1999. Environmental Management, 30, 508–515.
    OpenUrlPubMed
    1. Cole C. A.,
    2. Urban C. A.,
    3. Russo P.,
    4. Murray J.,
    5. Hoyt D.,
    6. Brooks R. P.
    (2006). Comparison of the long-term water levels of created and natural reference wetlands in northern New York, USA. Ecological Engineering, 27, 166–172.
    OpenUrl
    1. Cole C. A.,
    2. Urban C. A.,
    3. Russo P.,
    4. Murray J.,
    5. Hoyt D.,
    6. Brooks R. P.
    (2013). Herbaceous plant community composition in created wetlands over seven years in northern New York USA. Studies in the History of Gardens & Designed Landscapes, 33, 235–247.
    OpenUrl
    1. Collinge S. K.,
    2. Ray C.
    (2009). Transient patterns in the assembly of vernal pool plant communities. Ecology, 90, 3313–3323.
    OpenUrlCrossRefPubMedWeb of Science
    1. Cowles H. C.
    (1899). The ecological relations of the vegetation on the sand dunes of Lake Michigan. University of Chicago Press.
    1. Davidson D. W.
    (1993). The effects of herbivory and granivory on terrestrial plant succession. Oikos, 68, 23–35.
    OpenUrlCrossRefWeb of Science
    1. del Moral R.,
    2. Sandler J. E.,
    3. Muerdter C. P.
    (2009). Spatial factors affecting primary succession on the Muddy River Lahar, Mount St. Helens, Washington. Plant Ecology, 202, 177–190.
    OpenUrl
    1. del Moral R.,
    2. Walker L. R.,
    3. Bakker J. P.
    (2007). Insights gained from succession for the restoration of landscape structure and function. In Walker L. R., Walker J., Hobbs R. J. (Eds.), Linking restoration and ecological succession (pp. 19–44). Springer.
    1. Doropoulos C.,
    2. Roff G.,
    3. Visser M.,
    4. Mumby P. J.
    (2017). Sensitivity of coral recruitment to subtle shifts in early community succession. Ecology, 98, 304–314.
    OpenUrl
    1. Egler F. E.
    (1954). Vegetation science concepts: I. Initial floristic composition, a factor in old-field vegetation development. Vegetatio, 4, 412–417.
    OpenUrlCrossRef
    1. Falk D. A.,
    2. Palmer M. A.,
    3. Zedler J. B.
    (2006). Foundations of restoration ecology. Island Press.
    1. Freitas R. F.,
    2. Schrack E. C.,
    3. He Q.,
    4. Silliman B. R.,
    5. Furlong E. B.,
    6. Telles A. C.,
    7. Costa C. S. B.
    (2016). Consumer control of the establishment of marsh foundation plants in intertidal mudflats. Marine Ecology Progress Series, 547, 79–89.
    OpenUrl
    1. Fukami T.,
    2. Dickie I. A.,
    3. Wilkie J. P.,
    4. Paulus B. C.,
    5. Park D.,
    6. Roberts A.,
    7. Buchanan P. K.,
    8. Allen R. B.
    (2010). Assembly history dictates ecosystem functioning: Evidence from wood decomposer communities. Ecology Letters, 13, 675–684.
    OpenUrlCrossRefPubMedWeb of Science
    1. Galatowitsch S. M.
    (2012). Ecological restoration. Sinauer Associates.
    1. Gleason H. A.
    (1917). The structure and development of the plant association. Bulletin of the Torrey Botanical Club, 44, 463–481.
    OpenUrlCrossRef
    1. Gómez-Baggethun E.,
    2. Barton D. N.
    (2013). Classifying and valuing ecosystem services for urban planning. Ecological Economics, 86, 235–245.
    OpenUrlCrossRef
    1. Goodell K.,
    2. Parker I. M.
    (2017). Invasion of a dominant floral resource: Effects on the floral community and pollination of native plants. Ecology, 98, 57–69.
    OpenUrl
    1. Gutrich J. J.,
    2. Taylor K. J.,
    3. Fennessy M. S.
    (2009). Restoration of vegetation communities of created depressional marshes in Ohio and Colorado (USA): The importance of initial effort for mitigation success. Ecological Engineering, 35, 351–368.
    OpenUrlCrossRefWeb of Science
    1. Hallett L. M.,
    2. Standish R. J.,
    3. Hulvey K. B.,
    4. Gardener M. R.,
    5. Suding K. N.,
    6. Starzomski B. M.,
    7. Murphy S. D.,
    8. Harris J. A.
    (2013). Towards a conceptual framework for novel ecosystems. In Hobbs R. J., Higgs E. S., Hall C. M. (Eds.), Novel ecosystems: Intervening in the new ecological world order (pp. 16–28). Wiley-Blackwell.
    1. Hartnett D. C.,
    2. Hickman K. R.,
    3. Fischer Walter L. E.
    (1996). Effects of bison grazing, fire, and topography on floristic diversity in tallgrass prairie. Journal of Range Management, 49, 413–420.
    OpenUrlCrossRefWeb of Science
    1. Higgs E.
    (2017). Novel and designed ecosystems. Restoration Ecology, 25, 8–13.
    OpenUrl
    1. Hobbs R. J.,
    2. Arico S.,
    3. Aaronson J.,
    4. Baron J. S.,
    5. Bridgewater P.,
    6. Cramer V. A.,
    7. Epstein P. R.,
    8. Ewel J. J.,
    9. Klink C. A.,
    10. Lugo A. E.,
    11. Norton D.,
    12. Ojima D.,
    13. Richardson D. M.,
    14. Sanderson E. W.,
    15. Valladares F.,
    16. Vila M.,
    17. Zamora R.,
    18. Zobel M.
    (2006). Novel ecosystems: Theoretical and management aspects of the new ecological world order. Global Ecology and Biogeography, 15, 1–7.
    OpenUrl
    1. Hobbs R. J.,
    2. Higgs E.,
    3. Hall C. M.
    (Eds.). (2013). Novel ecosystems: Intervening in the new ecological world order. Wiley-Blackwell.
    1. Hobbs R. J.,
    2. Higgs E.,
    3. Harris J. A.
    (2009). Novel ecosystems: Implications for conservation and restoration. Trends in Ecology & Evolution, 24, 599–605.
    OpenUrl
    1. Hoeltje S. M.,
    2. Cole C. A.
    (2007). Losing function through wetland mitigation in central Pennsylvania, USA. Environmental Management, 39, 385–402.
    OpenUrlPubMed
    1. Hoeltje S. M.,
    2. Cole C. A.
    (2009). Comparison of function of created wetlands of two age classes in central Pennsylvania. Environmental Management, 43, 597–608.
    OpenUrlPubMed
    1. Hunter F. C.
    (2011). Using ecological theory to guide urban planting design: An adaptation strategy for climate change. Landscape Journal, 30, 2–11.
    OpenUrl
    1. Kardol P.,
    2. Souza L.,
    3. Classen A. T.
    (2013). Resource availability mediates the importance of priority effects in plant community assembly and ecosystem function. Oikos, 122, 84–94.
    OpenUrlCrossRefWeb of Science
    1. Keddy P. A.
    (2017). Plant ecology: Origins, processes, consequences. 2nd ed. Cambridge University Press.
    1. Kennedy P. L.,
    2. Fontaine J. B.,
    3. Hobbs R. J.,
    4. Johnson T. N.,
    5. Boyle R.,
    6. Lueders A. S.
    (2018). Do novel ecosystems provide habitat value for wildlife? Revisiting the physiognomy vs. floristics debate. Ecosphere, 9, e02172. https://doi.org/10.1002/ecs2.2172
    OpenUrl
    1. Laughland D.,
    2. Phu L.,
    3. Milmoe J.
    (2014). Restoration returns: The contribution of Partners for Fish and Wildlife program and Coastal Program Restoration Projects to local U.S. economies. U.S. Fish and Wildlife Service. Retrieved from https://www.cascobayestuary.org/wp-content/uploads/2014/07/2014_usfws_restoration_returns2.pdf
    1. Long A. L.,
    2. Kettenring K. M.,
    3. Hawkins C. P.,
    4. Neale C. M. U.
    (2017). Distribution and drivers of a widespread, invasive wetland grass, Phragmites australis, in wetlands of the Great Salt Lake, Utah, USA. Wetlands, 37, 45–57.
    OpenUrl
    1. MacDougall A. S.,
    2. Turkington R.
    (2005). Are invasive species the drivers or passengers of change in degraded ecosystems? Ecology, 86, 42–55.
    OpenUrlCrossRefWeb of Science
    1. Mascaro J.,
    2. Harris J. A.,
    3. Lach L.,
    4. Thompson A.,
    5. Perring M. P.,
    6. Richardson D. M.,
    7. Ellis E. C.
    (2013). Origins of the novel ecosystems concept. In Hobbs R. J., Higgs E. S., Hall C. M. (Eds.), Novel ecosystems: Intervening in the new ecological world order (pp. 45–57). Wiley-Blackwell.
    1. McAvoy T. J.,
    2. Kok L. T.,
    3. Johnson N.
    (2016). A multiyear year study of three plant communities with purple loosestrife and biological control agents in Virginia. Biological Control, 94, 62–73.
    OpenUrl
    1. Meiners S. J.,
    2. Phipps K. K.,
    3. Pendergast T. H. IV.,
    4. Canam T.,
    5. Carson W. P.
    (2017). Soil microbial communities alter leaf chemistry and influence allelopathic potential among coexisting plant species. Oecologia, 183, 1155–1165.
    OpenUrl
    1. Miles J.
    (1985). The pedogenic effects of different species and vegetation types and the implications of succession. Journal of Soil Science, 36, 571–584.
    OpenUrlCrossRefGeoRef
    1. Mitchell R. J.,
    2. Marrs R. H.,
    3. Le Duc M. G.,
    4. Auld M. H. D.
    (1997). A study of succession on lowland heaths in Dorset, southern England: Changes in vegetation and soil chemical properties. Journal of Applied Ecology, 34, 1426–1444.
    OpenUrlCrossRefWeb of Science
    1. Mitsch W. J.,
    2. Wilson R. F.
    (1996). Improving the success of wetland creation and restoration with know-how, time, and self-design. Ecological Applications, 6, 77–83.
    OpenUrlCrossRefWeb of Science
    1. Mitsch W. J.,
    2. Zhang L.,
    3. Stefanik K. C.,
    4. Nahlik A. M.,
    5. Anderson C. J.,
    6. Bernal B.,
    7. Hernandez M..,
    8. Song K.
    (2012). Creating wetlands: Primary succession, water quality changes, and self-design over 15 years. BioScience, 62, 237–250.
    OpenUrlCrossRef
    1. Moreno-Mateos D.,
    2. Meli P.,
    3. Vara-Rodrıguez M. I.,
    4. Aronson J.
    (2015). Ecosystem response to interventions: Lessons from restored and created wetland ecosystems. Journal of Applied Ecology, 52, 1528–1537.
    OpenUrl
    1. Morris W. F.,
    2. Wood D. M.
    (1989). The role of lupine in succession on Mount St. Helens: Facilitation or inhibition? Ecology, 70, 697–703.
    OpenUrlCrossRefWeb of Science
    1. Morse N. B.,
    2. Pellissier P. A.,
    3. Cianciola E. N.,
    4. Brereton R. L.,
    5. Sullivan M. M.,
    6. Shonka N. K.,
    7. Wheeler T. B.,
    8. McDowell W. H.
    (2014). Novel ecosystems in the Anthropocene: A revision of the novel ecosystem concept for pragmatic applications. Ecology and Society, 19, 12. https://doi.org/10.5751/ES-06192-190212
    OpenUrl
    1. Murphy M. D.
    (2016). Landscape architecture theory: An ecological approach. Island Press.
    1. N’Guyen A.,
    2. Hirsch P. E.,
    3. Adrian-Kalchhauser I.,
    4. Burkhardt-Holm P.
    (2016). Improving invasive species management by integrating priorities and contributions of scientists and decision makers. Ambio, 45, 280–289.
    OpenUrl
    1. Odum E. P.
    (1969). The strategy of ecosystem development. Science, 164, 262–270.
    OpenUrlFREE Full Text
    1. Perry L. G.,
    2. Galatowitsch S. M.
    (2006). Light competition for invasive species control: A model of cover crop-weed competition and implications for Phalaris arundinacea control in sedge meadow wetlands. Euphytica, 148, 121–134.
    OpenUrl
    1. Pickett S. T. A.,
    2. Cadenasso M. L.,
    3. Meiners S. J.
    2009. Ever since Clements: From succession to vegetation dynamics and understanding to intervention. Applied Vegetation Science, 12, 9–21.
    OpenUrl
    1. Plückers C.,
    2. Rascher U.,
    3. Scharr H.,
    4. von Gillhaussen P.,
    5. Beierkuhnlein C.,
    6. Temperton V. M.
    (2013). Sowing different mixtures in dry acidic grassland produced priority effects of varying strength. Acta Oecologica, 53, 110–116.
    OpenUrl
    1. Rebele F.
    (2008). Vegetation development on deposit soils starting at different seasons. Plant Ecology, 195, 1–12.
    OpenUrl
    1. Roff G.,
    2. Doropoulos C.,
    3. Zupan M.,
    4. Rogers A.,
    5. Steneck R. S.,
    6. Golbuu Y.,
    7. Mumby P. J.
    (2015). Phase shift facilitation following cyclone disturbance on coral reefs. Oecologia, 178, 1193–1203.
    OpenUrl
    1. Romanello G. A.
    (2009). Microstegium vimineum invasion in central Pennsylvanian slope, seep wetlands: Site comparisons, seed bank investigation and water as a vector for dispersal. MS thesis, Penn State University.
    1. Schrama M.,
    2. Berg M. P.,
    3. Olff H.
    (2012). Ecosystem assembly rules: The interplay of green and brown webs during salt marsh succession. Ecology, 93, 2353–2364.
    OpenUrl
    1. Sinclair A. R. E.,
    2. Pech R. P.,
    3. Fryxell J. M.,
    4. McCann K.,
    5. Byrom A. E.,
    6. Savory C. J.,
    7. Brashares J.,
    8. Arthur A. D.,
    9. Catling P. C.,
    10. Triska M. D.,
    11. Craig M. D.,
    12. Sinclair T. J. E.,
    13. McLaren R. R.,
    14. Turkington R.,
    15. Beyers R. L.,
    16. Harrower W. L.
    (2018). Predicting and assessing progress in the restoration of ecosystems. Conservation Letters, 11, 1–10.
    OpenUrl
    1. Sonntag D. H.,
    2. Cole C. A.
    (2008). Determining the feasibility and cost of an ecologically-based wetland design for a mitigation wetland in central Pennsylvania. Landscape and Urban Planning, 87, 10–21.
    OpenUrl
    1. Spieles D. J.
    (2005). Vegetation development in created, restored, and enhanced mitigation wetland banks of the United States. Wetlands, 25, 51–63.
    OpenUrlCrossRef
    1. Stapanian M. A.,
    2. Adams J. V.,
    3. Fennessy M. S.,
    4. Mack J.,
    5. Micacchion M.
    (2013). Candidate soil indicators for monitoring the progress of constructed wetlands toward a natural state: A statistical approach. Wetlands, 33, 1083–1094.
    OpenUrl
    1. Stefanowicz A. M.,
    2. Stanek M.,
    3. Nobis M.,
    4. Zubek S.
    (2017). Few effects of invasive plants Reynoutria japonica, Rudbeckia laciniata and Solidago gigantea on soil physical and chemical properties. Science of the Total Environment, 574, 938–946.
    OpenUrl
    1. Tansley A. G.
    (1935). The use and abuse of vegetational concepts and terms. Ecology, 16, 284–307.
    OpenUrlCrossRefWeb of Science
    1. Thorson R. M.,
    2. Harris S. L.
    (1991). How “natural” are inland wetlands? An example from the Trail Wood Audubon sanctuary in Connecticut, USA. Environmental Management, 15, 675–687.
    OpenUrlGeoRef
    1. Truitt A. M.,
    2. Granek E. F.,
    3. Duveneck M. J.,
    4. Goldsmith K. A.,
    5. Jordan M. P.,
    6. Yazzie K. C.
    (2015). What is novel about novel ecosystems: Managing change in an ever-changing world. Environmental Management, 55, 1217–1226.
    OpenUrl
    1. van der Geest K.,
    2. de Sherbinin A.,
    3. Kienberger S.,
    4. Zommers Z.,
    5. Sitati A.,
    6. Roberts E.,
    7. James R.
    (2019). The impacts of climate change on ecosystem services and resulting losses and damages to people and society. In Mechler R., Bouwer L., Schinko T., Surminski S., Linnerooth-Bayer J. (Eds.), Loss and damage from climate change: Concepts, methods and policy options (pp. 221–236). Springer Open. Retrieved from https://link.springer.com/book/10.1007%2F978-3-319-72026-5
    1. Van Moorleghem C.,
    2. de la Peña E.
    (2016). Aphid herbivory as a potential driver of primary succession in coastal dunes. Arthropod-Plant Interactions, 10, 89–100.
    OpenUrl
    1. Vitousek P.,
    2. Farrington H.
    (1997). Nutrient limitation and soil development: Experimental test of a biogeochemical theory. Biogeochemistry, 37, 63–75.
    OpenUrlCrossRef
    1. Vitousek P. M.,
    2. Reiners A.
    (1975). Ecosystem succession and nutrient retention: A hypothesis. BioScience, 25, 376–381.
    OpenUrlCrossRefWeb of Science
    1. Walker L. R.,
    2. del Moral. R.
    (2003). Primary succession and ecosystem rehabilitation. Cambridge University Press.
    1. Walker T. W.,
    2. Syers J. K.
    (1976). The fate of phosphorus during pedogenesis. Geoderma, 15, 1–19.
    OpenUrlCrossRefGeoRefWeb of Science
    1. Weidlich E. W. A.,
    2. von Gillhaussen P.,
    3. Delory B. M.,
    4. Blossfeld S.,
    5. Poorter H.,
    6. Temperton V M.
    (2017). The importance of being first: Exploring priority and diversity effects in a grassland field experiment. Frontiers in Plant Science, 7, 2008. https://doi.org/10.3389/fpls.2016.02008
    1. Wilson S. D.
    (2014). Help from the dead: Facilitation during succession can start when neighbours die. Journal of Vegetation Science, 25, 917–918.
    OpenUrl
PreviousNext
Back to top

In this issue

Landscape Journal: 38 (1-2)
Landscape Journal
Vol. 38, Issue 1-2
1 Jan 2019
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Landscape Journal.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Created Ecosystems and the Concept of Succession
(Your Name) has sent you a message from Landscape Journal
(Your Name) thought you would like to see the Landscape Journal web site.
Citation Tools
Created Ecosystems and the Concept of Succession
Charles Andrew Cole
Landscape Journal Jan 2019, 38 (1-2) 75-85; DOI: 10.3368/lj.38.1-2.75

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Created Ecosystems and the Concept of Succession
Charles Andrew Cole
Landscape Journal Jan 2019, 38 (1-2) 75-85; DOI: 10.3368/lj.38.1-2.75
Digg logo Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Guerrillas in Our Midst
  • Transdisciplinarity and Boundary Work for Landscape Architecture Scholars
  • Decolonizing the Language of Landscape Architecture
Show more Peer-Reviewed Articles

Similar Articles

Keywords

  • Ecology
  • design
  • mitigation
  • novel
  • restoration
  • succession
UWP

© 2023 Board of Regents of the University of Wisconsin System

Powered by HighWire